ÓüÆËã»úÕæÕýÄ£ÄâÉúÃü»¹Òª¶à¾Ã

·¢²¼Ê±¼ä£º2021-04-05 ÎÄÕÂÀ´Ô´£º¹âÃ÷Íø&ÖпÆÔº¸ßÄÜËù  ä¯ÀÀ´ÎÊý£º3110
03-31 07:40

µ¼Óï
µ±Ç°ÔÚ¼ÆËã¿Æѧ¡¢¼ÆËã»úÓ²¼þºÍÉúÃü¿Æѧ·½ÃæÎÞ·¨Ô¤ÁϵÄÍ»ÆÆ¿ÉÄÜ»áʹÎÒÃdz¯×ÅÄ¿±êÂõ½ø¼ÆËã»úÄ£ÄâÉúÎïѧµÄËٶȸü¿ì¡£

Roland R. Netz¡¢William A. Eaton | ×÷ÕßÕÔÓêͤ | ÒëÕß
ÁõÅàÔ´ | ÉóУ
µËһѩ| ±à¼­

ÂÛÎÄÌâÄ¿£º
Estimating computational limits on theoretical descriptions of biological cells
ÂÛÎĵØÖ·£º
https://www.pnas.org/content/118/6/e2022753118
°£¶ûΕѦ¶¨ÚÌÔÚËû1944ÄêµÄÖø×÷¡¶ÉúÃüÊÇʲô£¿¡·[1]ÖÐÎʵÀ£º¡°ÈçºÎʹÓÃÎïÀí¼æ»¯Ñ§·½·¨À´½âÊÍÔÚÒ»¸ö»îµÄÓлúÌåÔÚ×Ô¼ºµÄ¿Õ¼ä±ß½çÄÚ·¢ÉúµÄʱ¿Õʼþ£¿¡±ÔÚËæºóµÄ½ü80ÄêÖУ¬¿ÆÑÐÈËÔ±ÒѾ­Ì½Ë÷ÁËÐí¶àÓйØÑÇϸ°ûÏÖÏóµÄ¡¢¸üÉî²ã»úÀíµÄ³É¹û¡£ËäÈ»Èç´Ë£¬ÒÔµÚÒ»Ô­Àí¶ÔÉú»îÖеÄÉúÃüÌå½øÐмÆËã»úÄ£ÄâÈÔÈ»ÊÇÒ»¸öÒ£²»¿É¼°µÄÄ¿±ê¡£
ÔÚ×î½üһƪ·¢±íÓÚÃÀ¹ú¹ú¼Ò¿ÆѧԺԺ¿¯ PNAS µÄÎÄÕÂÖÐ[2]£¬Netz Óë Eaton Ô¤²âÁËÕâÖÖÄ£Äâ±äΪÏÖʵËùÐèµÄʱ¼ä¡£ËûÃǽøÒ»²½½«Æä¹À¼ÆÀ©Õ¹µ½¸ü´óµÄÉúÎïϵͳ£¬²¢ÌÖÂÛÊÇ·ñÒÔ¼°ºÎʱÓпÉÄÜÄ£ÄâÖîÈçÈËÄÔÖ®ÀàµÄ¶àϸ°ûʵÌå¡£
1. ÓüÆËã»úÄ£ÄâÉúÃü¹ý³Ì
ÔÚÒ»¸öÉúÎïѧÉÏÓÐÒâÒåµÄʱ¼ä¼ä¸ôÄÚ£¨ÀýÈçÒ»¸öСʱ¡¢Ò»´Îϸ°û·ÖÁÑʱ¼ä£©£¬Ä£Äâϸ°û´óСµÄ·Ö×Ó×°ÅäËƺõÊÇÒ»Ïî¼è¾ÞµÄÈÎÎñ¡£µÄÈ·£¬ÏÖ´ú·Ö×ÓÄ£ÄâÁìÓòµÄʤÀûÖ®Ò»¾ÍÊǹ۲쵽Á˵°°×ÖʵĿÉÄæÀÏ»¯¡ª¡ªÕâÖÖÀÏ»¯·¢ÉúÔÚ΢Ã뼶[3]¡£Ïà±È֮ϣ¬µ¥¸öϸ°ûÿСʱ¿ÉÒԺϳÉÊýǧ»òÊý°ÙÍò¸öµ°°×ÖÊ£¬ÆäÖÐÐí¶àµ°°×ÖÊ¿ÉÄÜÐèÒªÊýÃë»òÊý·ÖÖÓ²ÅÄÜÕÛµþ£¬²¢ÇÒÖ»ÓÐÔÚϸ°û»úе£¨cellular machinery£©µÄ°ïÖúϲÅÄÜÍê³É¡£
ÔÚ×îеĿÆÑг¢ÊÔÖÐ[4]£¬Ñо¿ÕßÄ£ÄâÁËϸ°ûÖÊÖУ¬Ïà¶Ô½Ï´óµÄ100 nm¡Á100 nm¡Á100 nmÑǿռ䡣µ«ÊÇ£¬¸ÃÑо¿ÖлñµÃµÄÊýÊ®ÄÉÃëµÄʱ¼ä³ß¶ÈÈ´·Ç³£¶Ì£¬±ÈËùÐèµÄ1Сʱ¶ÌÁË10¸öÊýÁ¿¼¶£¡µ«ÊÇ£¬Èç¹û°´ÕÕĦ¶û¶¨ÂɵÄÔ¤²â£¬¼ÆËãÄÜÁ¦¼ÌÐø³ÊÖ¸ÊýÔö³¤£¬ÄÇôÃÖºÏÕâÖÖʱ¼ä³ß¶ÈÉϵIJî¾àËƺõ²¢·ÇÒ£²»¿É¼°¡£

ͼ1. Ħ¶û¶¨ÂÉÈÏΪ¼¯³Éµç·¿ÉÈÝÄɵľ§Ìå¹ÜÊýÁ¿£¬Ã¿¸ôÔ¼18¸öÔ·­±¶£¬´ú±í×ŶԼÆËãÄÜÁ¦Ö¸ÊýÔö³¤µÄ¹Û²âºÍÔ¤ÆÚ¡£µ«Ëæ×ÅоƬ×éÖð½¥½Ó½üµ¥¸öÔ­×ӳ߶ȣ¬Ä¦¶û¶¨ÂÉ¿ÉÄÜ»áʧЧ¡£
µÄÈ·£¬Èç¹û¼ÆËã»úËÙ¶Èÿ 1.5 Äê·­Ò»·¬£¬ÔòÓ¦¸ÃÓпÉÄÜÔÚ50Äê[5]ÄÚ´ïµ½ËùÐèµÄʱ¼ä·¶Î§¡£Ä³Ð©Îª¼ÓËÙ·Ö×ÓÄ£Äâ¶ø¿ª·¢µÄ·½·¨¿ÉÄÜ»áÌṩ½øÒ»²½µÄ°ïÖú¡£ÀýÈ磬¿ÉÒÔ³¢ÊÔÌá¸ß·ÂÕæζÈÒԼӿ춯Á¦Ñ§Ëٶȡ£¾¡¹ÜÕâÖÖ¼òµ¥µÄ¼ÓËÙ¶¯Á¦Ñ§µÄ·½·¨´æÔÚÎÊÌ⡪¡ª±ÈÈçÎÒÃÇÎÞ·¨Í¨¹ý½«ÆÏÌѾÆÔÚ²»ÆÆ»µÖÊÁ¿µÄÇ°ÌáÏÂÉýÎÂÀ´¼ÓËÙÀÏ»¯¡ª¡ªµ«¸Ã˼·ÈÔÈ»¾ßÓÐÆô·¢¡£
È»¶ø£¬´æÔÚÒ»¸ö¹Ø¼üÎÊÌ⣺·Ö×Ó¶¯Á¦Ñ§£¨Molecular dynamics£¬MD£©×÷Ϊ±ê×¼ÔÚÔ­×Ó¼¶É϶ÔÉúÎï·Ö×ÓÏÖÏó½øÐн¨Ä£µÄ·½·¨²¢²»ÊÇÕæÕýµÄµÚÒ»ÊÖ·½·¨£ºÒª¸ù¾ÝµÚÒ»ÐÔÔ­Àí·½·¨£¨first-principles method£©Ô¤²â·Ö×Ó¼äÓë·Ö×Ó¼äÏ໥×÷Ó㬱ØÐëΪµç×ÓºÍÔ­×ÓºËÇó½âÁ¿×ÓѦ¶¨ÚÌ·½³Ì£¨Schrödinger equation£©¡ª¡ªÕâÐèÒª¾Þ´óËãÁ¦¡£
2. ¼ò»¯Ä£Äâ½µµÍËãÁ¦
´ÓÍ·¿ªÊ¼Ê¹Ó÷Ö×Ó¶¯Á¦Ñ§·¨Çó½âµÄ´ú¼Û¾ÍÊǿɹ۵ļÆËã³É±¾¡£Ïà±È֮ϣ¬±ê×¼µÄ·Ö×Ó¶¯Á¦Ñ§·½·¨ÀûÓÃÁËÁ½ÖÖ¼ò»¯·½·¨£º1£©ÓÉÓÚµç×ÓµÄÒƶ¯ËٶȱÈÔ­×Ӻ˿ìµÃ¶à£¬Òò´ËËüÃÇ¿ÉÒÔʹԭ×Ӻ˸ÐÊܵ½ÓÐЧµÄÏ໥×÷Óã»2£©¿ÉÒÔʹÓþ­Ñé¡°Á¦³¡£¨force field£©¡±À´½üËÆÕâÖÖÓÐЧµÄÏ໥×÷Ó㬵«ËüÖ»ÊÇÃèÊöÓÐЧÊÆÄÜËæºË×ø±êµÄº¯Êý¶ø±ä»¯µÄ·ÖÎö¹«Ê½¡£¾­¹ýÊýÊ®ÄêµÄÅ·¢Õ¹£¬ÏÖÔÚÁ¦³¡Òѷdz£¾«È·ÇÒ¿É¿¿¡£²»ÐÒµÄÊÇ£¬µ±Ç°Ê¹ÓõĴó¶àÊýÁ¦³¡ÈÔÈ»´æÔÚ»ù±¾¾ÖÏÞÐÔ£º¿ÆÑÐÈËÔ±ÎÞ·¨¶ÔÆä½øÐл¯Ñ§´¦Àí¡£
»¯Ñ§·´Ó¦Éæ¼°¹²¼Û¼üºÍ¶ÏÁѺÍÐγɡ£Ã»Óл¯Ñ§·´Ó¦£¬¾Í²»»áÓÐÉúÃü¡£Ï¸°ûÄÚµÄø´ß»¯Ðí¶à»¯Ñ§·´Ó¦£¬°üÀ¨Óë´úл¹ý³Ì»ò»úеÔ˶¯²úÉúÓйصĻ¯Ñ§·´Ó¦¡£ÎªÁËÃèÊöÕâÖÖ·´Ó¦£¬±ØÐë½øÐÐÁ¿×Ó´¦Àí¡£Netz ºÍ Eaton Ö¸³ö£ºÐÒÔ˵ÄÊÇ£¬²»ÐèÒªÁ¿×ÓÁ¦Ñ§À´ÃèÊöÕû¸öµ¥Ôª¡£Ïà·´£¬Ñо¿ÈËÔ±½öÐèÒªÁ¿×ÓÁ¦Ñ§´¦ÀíÀ´ÃèÊöÐγɵÄÔ­×ÓµÄÓÐÏÞ×Ó¼¯¡ª¡ªÈçøµÄ»îÐÔλµã¼°Æäµ×Îï¡£
ϸ°ûÄ£ÄâµÄÁ¿×Ó²¿·ÖÖµµÃ½øÒ»²½Ñо¿¡£»¯Ñ§·´Ó¦µÄËÙÂÊ£¨¼´Ã¿µ¥Î»Ê±¼ä·¢Éú·´Ó¦µÄ¸ÅÂÊ£©Í¨³£¿ÉÒÔÓÉ°¢Â×ÄáÎÚ˹¶¨ÂÉ£¨Arrhenius law£©À´ÃèÊö£¬

ÆäÖЦÍÊÇÒ»¸öÇ°ÖÃÒò×Ó£¬kBTÊÇÈÈÄÜ£¨µÈÓÚ²£¶û×ÈÂü³£ÊýºÍζȵij˻ý£©£¬EaÊǻÄÜ£¬¿ÉÒÔ´ÖÂԵؽâÊÍΪãÐÖµÄÜÁ¿¡£ÔÚ·´Ó¦ÖУ¬±ØÐëÌṩ¸ø¸Ã·Ö×ӻÄÜEa²ÅÄÜʹÆä´ÓÎȶ¨µÄ·Ö×Ó¹¹ÏóÖÐÏûʧ£¬´Ó¶ø¹ý¶Éµ½·´Ó¦²úÎͼ2£©¡£Èç¹ûTÊÇÈËÌåµÄζȣ¬ÔòÓÐkBT¡Ö0£º6kcal = mol¡£

ͼ2. ÓÃÓÚ¼ÆËã·´Ó¦ËÙÂʵÄÓÐЧģÄâ·½·¨Ê¼ÓÚ½«ÏµÍ³ÖÃÓÚ·´Ó¦ÎïºÍ²úÎïÖ®¼äµÄÖмäλÖÃ
Õâ¸öÖØÒªÊý×Ö¶ÔÁ¿×Ó¼ÆËãËùÐèµÄ¾«¶ÈÉèÖÃÁËÏÞÖÆ¡£µÄÈ·£¬¸ù¾Ý°¢Â×ÄáÎÚ˹¶¨ÂÉ£¬ÈôÊǹÀËã»î»¯ÄÜʱ³öÏÖ1 kcal / molµÄÎó²î£¬Ô¤²âµÄ·´Ó¦ËÙÂʽ«½µµÍ5±¶¡£¾¡¹ÜÓÐһЩÁ¿×Ó·½·¨¿ÉÒÔʹÄÜÁ¿¼ÆËãµÄ¾«¶ÈԶСÓÚkBT£¬µ«ËãÁ¦ÐèÇ󼫴󣬵¼Ö¸÷½³Ìͨ³£½öÏÞÓÚÔÚÉÙÊý¼¸¸öÔ­×Ó×é³ÉµÄϵͳÖÐʹÓá£È»¶øÄ¿Ç°£¬ÔÚÖîÈçø´ß»¯ÖÐÓöµ½µÄÄÇЩ¸ü¸´ÔӵķÖ×Óϵͳ£¬¿ÆÑÐÈËÔ±ÒÀÈ»ÔÚʹÓÃÕâÖÖ·½·¨½øÐÐÄ£Äâ¡£Netz ºÍ Eaton [2] Ìá³öÁËÃܶȷºº¯ÀíÂÛ£¨density functional theory£¬DFT£©·½·¨[2]¡£DFTËùÐèµÄ¼ÆË㹤×÷Á¿Óëϵͳ¹æÄ£µÄÁ¢·½³ÉÕý±È¡£µ«ÊÇDFTµÄµ±Ç°¾«¶Èͨ³£½öΪ¼¸Ç§¿¨Ã¿Ä¦¶û[6]£¬Òò´Ë£¬Í¨¹ý»ùÓÚDFTµÄÄ£ÄâËùÔ¤²âµÄ¶¯Ì¬Ê±¼ä³ß¶È½«ÌáÉýÒ»¸öÊýÁ¿¼¶¡£ÓÈÆäÐèҪעÒâµÄÊÇ£¬ÓëÆäËûµç×ӽṹ·½·¨²»Í¬£¬DFT²¢Ã»ÓÐÌṩϵͳµÄ·½·¨£¬Í¨¹ýÐ޸ĸü¸Ä¼ÆËã²ÎÊýÒÔÌá¸ßÆä׼ȷÐÔ¡£
¹À¼Æʱ¼ä³ß¶ÈÉϵÄÊýÁ¿¼¶Îó²î±¾Éí²¢²»ÊÇÖÂÃüµÄ£ºÈç¹û·ÂÕæÖз¢ÉúµÄËùÓйý³Ì¶¼±Èʵ¼ÊËٶȿìÊ®±¶£¬Ôò¼òµ¥µÄÖð²½Éý¼¶½«»Ö¸´ÕýÈ·µÄ¶¯Á¦Ñ§¡£µ«ÊÇ£¬ÏëÏóÒ»ÏÂijЩ¹ý³Ì·¢ÉúµÄËٶȿìÁËÊ®±¶£¬¶øÆäËû¹ý³Ì·¢ÉúµÄËÙ¶ÈÈ´ÂýÁËÊ®±¶£ºÕ⽫ÑÏÖØÆÆ»µ²»Í¬¹ý³ÌµÄÏà¶ÔËÙÂÊ¡£Òò´Ë£¬ÔÚ·ÂÕæÖв»»á±£ÁôÊʵ±Ï¸°û¹¦ÄÜËùÐèµÄÏà¶ÔËÙÂʵľ«Ãîƽºâ£¬µ¼ÖÂÆäÔ¤²âÄÜÁ¦µÄϽµ¡£
ÕâЩ¿¼ÂÇÒòËرíÃ÷£¬³ý·ÇDFTµÄ׼ȷÐԵõ½ÏÔ×ÅÌá¸ß£¨×î½ü»ùÓÚ»úÆ÷ѧϰµÄDFT·½·¨ÔÚÕâ·½ÃæËƺõºÜÓÐÏ£Íû[6]£©£¬·ñÔò²¢²»ÊµÓá£È»¶ø£¬¿ÉÄÜÐèÒª»¨·Ñ´óÁ¿³É±¾µÄÁ¿×Ó¼ÆËã²ÅÄÜ»ñµÃËùÐèµÄÔ¤²âÄÜÁ¦¡£ÓÉÓÚ¼ÆËã³É±¾ÓëËùÐ辫¶ÈÖ®¼ä´æÔÚ·´±È¹Øϵ£¬Òò´Ë¿ÉÒÔ½«ÕâÖÖ¹ØϵÊÓΪ Netz ºÍ Eaton Ìá³öµÄ¡°ÉúÎﲻȷ¶¨ÐÔ¹Øϵ£¨biological uncertainty relationships£©¡±Ö®Ò»¡£

ͼ3. ÑÇϸ°û½á¹¹¹Û²â¼°ÆäÎïÀí»úÖÆÍƲâÒÑÓн϶àÑо¿£¬µ«´¿¼ÆËã»úÄ£ÄâÈÔÈ»À§ÄÑ¡£Í¼ÎªÒÔº£ÂíÇøÉñ¾­ÔªÏ¸°ûµÄÑÇϸ°û½á¹¹
ÎÒÃÇÒѾ­Á˽âÁ˺ܶàÓйØÑÇϸ°ûÏÖÏóµÄÎïÀí»úÖÆ£¬µ«ÊÇʹÓõÚÒ»Ô­Àí¶Ô»î¶¯ÖеĻîϸ°û½øÐмÆËã»úÄ£ÄâÈÔÈ»ÊÇÒ»¸öÒ£²»¿É¼°µÄÄ¿±ê¡£»ùÓÚ×î½ü Netz ºÍ Eaton ÔÚÕâƪÎÄÕÂÖиø³öµÄÔ¤²â£¬ÔÚÕâÑùµÄÄ£Äâ±äΪÏÖʵ֮ǰ£¬ÎÒÃǽ«ÐèÒªµÈ´ý¶à³¤Ê±¼ä¡£
¾¡¹ÜÒ»¸öÔ­×Ó¼¶µÄӰƬÂýËÙ²¥·ÅÖÁÒ»¸öСʱ»áÁîÈËÐË·Ü£¬µ«ÓÉÓÚÁíÒ»¸öÔ­Òò£¬Ëü¿ÉÄÜûÓÐÌ«´óµÄÔ¤²âÄÜÁ¦£º´ó¶àÊýϸ°ûÏÖÏó¶¼ÔÚÔËÐУ¬È»¶øÏÖÓÐÊÖ¶ÎÖ»ÄÜͨ¹ý¶à´ÎÖظ´Ä£ÄâÀ´»ýÀÛ×ã¹»µÄͳ¼ÆÐÅÏ¢ºó²ÅÄÜÀí½â¡£ÔÚÕâ·½Ã棬ÏÖ´úµÄ¡°Ï¸°ûѧ£¨celling£©¡±·½·¨½â¾ö³¤ÆÚ¶¯Á¦Ñ§ÎÊÌâËƺõÌرðÓÐÏ£Íû³ÉΪһÖÖ²¹¾È´ëÊ©¡£ÕâÌ×Ô­×ÓÂÛ·½·¨½«ÏµÍ³µÄ¿Õ¼ä»®·ÖΪ¶à¸öϸ°û£¨²»ÒªÓëÉúÎïϸ°û»ìÏý£©£¬²¢¼ÆËãÿ¸öϸ°ûÄڵĶÌʱµ¯µÀ£¨short-time trajectories£©£¬ÒÔ¹¹½¨ÃèÊöϸ°ûÖ®¼ä¹ý¶ÉµÄ¶¯Á¦Ñ§·½°¸¡£ËüʵÏÖÁËһʯ¶þÄñ£¨It kills two birds with one stone£©£¬ÒòΪËü¿ÉÒÔ×Ô¶¯ÌṩϵͳµÄͳ¼ÆÃèÊö£¬²¢ÇÒ±ÈÂùÁ¦ÔËËã¸üÓÐЧ¡£
Ëæ»úµÄ¡¢Ö÷·½³ÌʽµÄÉúÎïϸ°ûÄ£Äâ·½·¨¿ÉÒÔ¿´×÷ÊÇϸ°ûµÄÒ»ÖÖ¼«ÏÞÇé¿ö£¬¶øÕâÖÖÇé¿öÓëÔ­×Ó½âÎö¹ì¼£µÄ¹Øϵ²¢²»Ã÷ÏÔ¡£Netz ºÍ Eaton µÄ¹À¼Æ±íÃ÷£¬¼´Ê¹Ê¹ÓÃÏÖ´ú¼ÆËã×ÊÔ´£¬¶ÔÉúÎïϸ°û£¨¶ø·Ç´óÄÔ£¡£©µÄÕâÖÖÄ£ÄâÒ²ÊÇ¿ÉÒÔ´ïµ½µÄ¡£
È»¶ø£¬³ýÁËËæ»úÖ÷·½³Ì·¨µÄ½üËÆÐÔÖÊÍ⣬Ëü»¹ÃæÁÙ×ÅË«ÖØÌôÕ½¡£Ê×ÏÈ£¬¸Ã·½·¨ÐèÒªÊÂÏÈÁ˽âËùÓÐÏà¹ØµÄ»¯Ñ§·½³Ìʽϸ°ûÄÚµÄÐγɡ£ÕâÓÐÒ»¸öÖØ´óµÄ¾ÖÏÞ£¬ÒòΪÑо¿ÕßÏ£Íûͨ¹ýÄ£Äâ·¢ÏÖ´Ëǰδ±ØÄÜÔ¤Áϵ½µÄл¯Ñ§¹ý³Ì¡£¹æ±Ü´ËÏÞÖƵÄÒ»ÖÖDZÔÚ·½·¨ÊÇÔÚ¶¯Ì¬µØ·¢ÏÖ¿ÉÄܵĶ¯Á¦Ñ§Ê¼þ£¨»¯Ñ§×ª»¯£©µÄÇé¿öÏ£¬²ÉÓÃ×ÔÊÊÓ¦·½·¨¡£
Æä´Î£¬¸Ã·½·¨ÒªÇó½«Ã¿ÖÖ¿ÉÄܵĻ¯Ñ§×ª»¯µÄËÙÂÊϵÊý×÷ΪÊäÈë¡£³ý·ÇʵÑé¿ÉÓ㬷ñÔò´ËÀàÐÅÏ¢±ØÐëÀ´×ÔÔ­×ÓÄ£Ä⡪¡ªÐÒÔ˵ÄÊÇ£¬Ö´ÐвÙ×÷µÄ¹æÄ£Òª±ÈÕû¸öÉúÎïϸ°ûµÄ¹æģСµÃ¶à¡£Í¬Ñù£¬ÔÚÕâÀÑо¿ÈËÔ±ÐèÒª¿¼Âǵ¼ÖÂËÙÂʹÀ¼ÆµÄ¼ÆËãµÄ׼ȷÐÔ¡£ÉÏÃæÒѾ­ÌÖÂÛÁËÒ»ÖÖÎó²îÀ´Ô´£¬¼´·Ö×ÓÄÜÁ¿¹À¼ÆµÄ׼ȷÐÔ£¬µ«ÊÇÓÉÓÚ²ÎÊýÊäÈëµ½·½³ÌÖУ¬ËùÒÔÀ§ÄѲ¢Ã»Óоʹ˽áÊø¡£¸ÃÄ£ÄâÈÔÈ»ÐèÒª¼ÆËã¡£ÕâÑù×öµÄÒ»ÖÖÖ±½Ó·½·¨ÊÇÔÚ·´Ó¦Îï״̬ÏÂÆô¶¯¸ÐÐËȤµÄ·Ö×Óϵͳ£¬µÈµ½·´Ó¦Íê³É£¨¼´´ïµ½·´Ó¦²úÎ£¬È»ºóÖظ´Ä£Ä⣬ֱµ½¹À¼Æ³öƽ¾ù·´Ó¦Ê±¼äΪֹ[9]¡£
3. еĵͳɱ¾Ä£Äâ·½·¨
Ò»ÖÖ¸üµÍ³É±¾µÄÌæ´ú·½·¨Êǹý¶É̬ÀíÂÛ£¬ÕâÊÇÿ±¾»¯Ñ§½Ì¿ÆÊéÖж¼½²µÄ½üËÆ·½·¨¡£²»ÐÒµÄÊÇ£¬ÏÖÔÚÎÒÃÇÖªµÀ¹ý¶É̬ÀíÂÛ¶ÔÒºÏ໯ѧ¶¯Á¦Ñ§µÄÃèÊöЧ¹û²»¾¡ÈËÒâ¡£Òò´Ë£¬ÈËÃǽ«²»µÃ²»ËßÖî¸ü׼ȷµÄ¡¢ÏàÓ¦Ò²¸ü°º¹óµÄ·½·¨¡£×Ô1970Äê´úÆ𣬻¯Ñ§ÎïÀíѧ½ç¿ª·¢ÁËÐí¶à·½·¨À´¼ÆËã¡°¾«È·µÄ¡±·´Ó¦ËÙÂÊ£¬¶øÎÞÐè½øÐг¤Ê±¼äµÄ¶¯Á¦Ñ§Ä£Äâ[7]£¬Í¨³£µÄÏë·¨ÊÇÔÚ·´Ó¦ÎïºÍ²úÎï״̬֮¼ä½øÐÐÄ£Ä⣬²¢¶Ôϵͳ½øÐмà¿Ø¡£Ö±µ½µ½´ï²úƷΪֹ¡£ÕâÑù£¬¿ÉÒÔʹÓÃÏà¶Ô½Ï¶ÌµÄ¹ì¼£[7]À´¼ÆËã¶Ô¹ý¶É̬ÀíÂ۵Ķ¯Ì¬Ð£Õý¡£

ͼ4. 2016Äêŵ±´¶û»¯Ñ§½±½±ÀøÁË·Ö×Ó»úÆ÷µÄÏà¹Ø¹¤×÷£¬¶ÔÉúÎï·Ö×Ó»úÆ÷µÄÑо¿½«´Ù½ø΢¹Û³ß¶È¼ÆËã»úÄ£ÄâµÄʵÏÖ
¶Ôµ¥¸öϸ°ûºÍ¶àϸ°ûϵͳ½øÐÐÄ£ÄâµÄÁíÒ»¸öÕÏ°­ÊÇ£¬ÕâÖÖÄ£Äâ²»ÊǶÀÁ¢µÄ£¬±ØÐëÒÀÀµÓÚÓйØϸ°û·Ö×Ó×éÖ¯µÄ½á¹¹ÐÅÏ¢¡£ÌرðÊǾͷÖ×Ó»úÆ÷µÄÄÚ²¿ÔËÐжøÑÔ£¬¸ÃÐÅÏ¢±ØÐëÀ´×ÔʵÑéÑо¿£¬Ä¿Ç°Éв»ÍêÕû¡£
×ܽáÉÏÊö¹Ûµã£¬¾¡¹Ü¿ÉÄÜÔÚδÀ´¼¸Ê®ÄêÄÚʵÏÖÕû¸öϸ°ûµÄ¼ÆËã»úÄ£Ä⣬µ«ÈËÃDz»Ó¦¸Ã½«ËùÓеijïÂ붼ѺעÓÚËüÃÇ×÷ΪѧϰÉúÃüÎïÖʵÄÖ÷Òª¹¤¾ßµÄЧÓᣵÚÒ»ÐÔÔ­ÀíÄ£Äâ¶àϸ°û×°ÅäÌ壨Èç´óÄÔ£©µÄÇ°¾°¸ü¼Ó÷öµ­¡£ÁíÒ»·½Ã棬ËùÓÐÕâЩ¿¼ÂǶ¼ÊÇ»ùÓÚ¶ÔÏÖÓзÂÕ湤¾ßµÄÍÆÂÛ£¬ÈËÃÇÓÀÔ¶¶¼²»Ó¦µÍ¹À¿ÆÑÐÈËÔ±µÄ´´ÔìÁ¦¡£µ±Ç°ÔÚ¼ÆËã¿Æѧ¡¢¼ÆËã»úÓ²¼þºÍÉúÃü¿Æѧ·½ÃæÎÞ·¨Ô¤ÁϵÄÍ»ÆÆ¿ÉÄÜ»áʹÎÒÃdz¯×ÅÄ¿±êÂõ½ø¼ÆËã»úÄ£ÄâÉúÎïѧµÄËٶȸü¿ì¡£
²Î¿¼ÎÄÏ×
1. E. Schrödinger, What is Life? The Physical Aspect of the Living Cell (Cambridge University Press, 1944).
2. R. R. Netz, W. A. Eaton, Estimating computational limits on theoretical descriptions of biological cells. Proc. Natl. Acad. Sci. U.S.A., 10.1073/pnas.2022753118 (2021).
3. K. Lindorff-Larsen, S. Piana, R. O. Dror, D. E. Shaw, How fast-folding proteins fold. Science 334, 517¨C520 (2011).
4. I. Yu et al., Biomolecular interactions modulate macromolecular structure and dynamics in atomistic model of a bacterial cytoplasm. eLife 5, e19274 (2016).
5. G. Henkelman, H. Jo ́ nsson, T. Lelièvre, N. Mousseau, A. F. Voter, ¡°Long-timescale simulations: Challenges, pitfalls, best practices, for development and applications¡± in Handbook of Materials Modeling, W. Andreoni, S. Yip, Eds. (Springer, 2020), pp. 1¨C10.
6. M. Bogojeski, L. Vogt-Maranto, M. E. Tuckerman, K. R. Müller, K. Burke, Quantum chemical accuracy from density functional approximations via machine learning. Nat. Commun. 11, 5223 (2020).
7. R. Elber, D. E. Makarov, H. Orland, Molecular Kinetics in Condense Phases: Theory, Simulation, and Analysis (John Wiley, 2020).
8. R. Elber, Perspective: Computer simulations of long time dynamics. J. Chem. Phys. 144, 060901 (2016).
9. G. Henkelman, H. Jo ́ nsson, Long time scale kinetic Monte Carlo simulations without lattice approximation and predefined event table. J. Chem. Phys. 115, 9657¨C9666 (2001).
À´Ô´£ºÖпÆÔº¸ßÄÜËù












ÉÏһƪ£º Ò½Éú¾ÈÃü£¬»úÆ÷ÈËÐøÃü
ÏÂһƪ£º ÖйúÌìÑÛÄýÍû²Ôñ·